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jean-francois.cordeau@hec.ca

Raf Jans
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The inventory routing problem (IRP) and the production routing problem (PRP) are two difficult problems

arising in the planning of integrated supply chains. These problems are solved in an attempt to jointly

optimize production, inventory, distribution and routing decisions. Although several studies have proposed

exact algorithms to solve the problems, the multi-vehicle aspect is often neglected due to its complexity.

We introduce multi-vehicle PRP formulations, with and without vehicle index, to solve the problem. Several

valid inequalities are proposed to strengthen the formulations. The vehicle index formulations are further

improved using symmetry breaking constraints, while the non-vehicle index formulation is strengthened by

several cuts. We futher consider the problem under the well-known maximum level and order-up-to level

inventory replenishment systems. We develop branch-and-cut algorithms for the different formulations and

extensive computational results are presented to show the effects of the inequalities and the formulations.

Key words : Integrated supply chain planning; inventory routing; production routing; multi-vehicle;

branch-and-cut

History :

1. Introduction.

In a typical retail supply chain which consists of sequential activities of production, stor-

age and distribution, each individual process is often planned and optimized using pre-

determined decisions from its previous activity. For example, a production planner makes
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production lot-sizing decisions in order to minimize production and inventory costs at the

production facility. The planned lot-sizing decisions are used as inputs in subsequent steps

in distribution planning. Since the decisions are limited by the plan of the former process,

benefits of coordination in the planning process have been left behind. This induced the

need for developing integrated supply chain operational planning systems to capture the

benefits and optimize the whole system.

Operation research techniques are seen as an effective tool in optimizing supply chain

operational planning decisions. Many studies have proposed integrated models to jointly

optimize decisions of subsequent processes. The inventory routing problem (IRP) is one of

these integrated problems that has received much attention during the past decade (see

Andersson et al. (2010) for a review). This problem considers the integration of replen-

ishment and routing plans in order to optimize total inventory and routing costs. When

production lot-sizing decisions are incorporated, the problem becomes the production rout-

ing problem (PRP) and it is a generalization of the IRP (Ruokokoski et al. 2010, Adulyasak

et al. 2011).

We consider the IRP and PRP with a discrete time finite horizon in this study. The

IRP first appeared in the gas delivery study by Bell et al. (1983). The problem is solved

using a Lagrangian relaxation method and decomposed by time period and by vehicle.

Christiansen (1999) introduced an IRP application in a maritime context, called inventory

pickup and delivery problem, and applied a Dantzig-Wolfe decomposition and column gen-

eration approach to solve the problem. Carter et al. (1996) and Campbell and Savelsbergh

(2004) proposed efficient heuristic procedures by decomposing the IRP into the allocation

problem (AP) and the vehicle routing problem (VRP). Since the IRP is a complicated

combinatorial problem, several metaheuristics, e.g., tabu search (Rusdiansyah and Tsao

2005), genetic algorithm (Abdelmaguid and Dessouky 2006), greedy randomized adaptive

search procedure (GRASP) (Savelsbergh and Song 2007), hybrid heuristic with combined

tabu search and MIPs (Archetti et al. 2011a), and adaptive large neighborhood search

(ALNS) (Coelho et al. 2012) have been proposed. Gaur and Fisher (2004) discussed a

periodic IRP where the demand pattern is repeated and developed a heuristic to solve the

problem.

As mentioned in Andersson et al. 2010, only few exact algorithms are proposed to solve

the IRP due to its complexity. We summarize here the literature concerning the exact
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methods in a retailer supply chain. To represent instance sizes, we use the term āc/b̄p/c̄v

where ā, b̄ and c̄ are the number of customers, periods and vehicles, respectively (e.g.,

10c/5p/2v represents an instance with 10 customers, 5 periods and 2 vehicles). Archetti

et al. (2007) developed a branch-and-cut approach for the IRP with a single vehicle and

analyzed three different replenishment policies for the customers. In the first policy, called

order-up-to level (OU), a visited customer receives exactly the amount wjocj brings its

inventory up to a predefined target stock level (TSL). The second policy, called maximum

level (ML), allows delivery quantities to be any positive value but the inventory at each

customer cannot exceed its maximum stock level. The third policy is similar to the ML

policy but there is no maximum stock level imposed at the customers. Archetti et al. (2007)

used different inequalities to strengthen the formulation for each policy and could solve

instances up to 45c/3p/1v and 30c/6p/1v to optimality within two hours for the IRP with

OU and ML policies. Solyalı and Süral (2011) proposed a stronger formulation for the

single vehicle IRP-OU using a shortest-path network representation of the OU policy at

each customer and used a similar branch-and-cut approach as presented in Archetti et al.

(2007). Solyalı and Süral (2011) could solve instances up to 60c/3p/1v and 15c/12p/1v

to optimality within two hours. Savelsbergh and Song (2008) considered a variant of the

IRP, called IRP with continuous move, where a product is distributed from a set of plants

to a set of customers by multiple vehicles. In this study, minimum delivery quantities are

imposed and inventory costs are disregarded. The authors proposed a multi-commodity

flow with vehicle index formulation and developed a branch-and-cut approach to solve the

problem.

A closely related problem, the PRP, has also received more attention in recent years. The

benefits of coordination in the PRP were first discussed in Chandra (1993) and Chandra

and Fisher (1994). Similar to the IRP, most of the previous studies employed heuristic

procedures to solve the problem. Several metaheuristics, such as, GRASP (Boudia et al.

2007), memetic algorithm (Boudia and Prins 2009), tabu search (Bard and Nananukul

2009, Armentano et al. 2011), and ALNS (Adulyasak et al. 2011), have been employed to

solve the PRP. Archetti et al. (2011b) discussed the PRP under the ML and OU policies

and developed an integer linear programming (ILP) heuristic to solve the problem.

Few studies have introduced exact algorithms or methods to compute strong lower bound

for the PRP. Fumero and Vercellis (1999) developed a Lagrangian relaxation approach to
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obtain lower bounds and heuristic solutions for a variant of the PRP where unit transporta-

tion costs are assumed and the routing decisions can be determined using the minimum

cost flow problem. A similar formulation was used by Solyalı and Süral (2009) to solve the

PRP-OU , but only instances with 8c/5p/1v were solved to optimality where the longest

computing time was approximately 20 hours. Ruokokoski et al. (2010) explored the per-

formance of different lot-sizing reformulation schemes for the PRP-ML with uncapacitated

production and an uncapacitated single vehicle, and further employed a branch-and-cut

approach similar to Archetti et al. (2007) to solve the problem. Bard and Nananukul (2010)

introduced a branch-and-price procedure for the PRP-ML with multi-vehicles. However,

since the subtour elimination constraints are in the form of the Miller-Tucker-Zemlin con-

straints (Miller et al. 1960), it led to a poor lower bound quality and only the instances up

to 10c/2p/5v are solved to optimality within 30 minutes. The emphasis of the study was

instead put on a heuristic procedure using the branch-and-price framework. Archetti et al.

(2011b) adopted the branch-and-cut approach as presented in Archetti et al. (2007) for

the PRP-ML with uncapacitated production and a single vehicle. Several valid inequalities

are also used to strengthen the formulation. However, computational testing was only per-

formed on 14c/6p/1v instances and not all instances were solved to optimality within two

hours. Table 1 presents a summary of the exact algorithms for the PRP and IRP in litera-

ture. We classify the problems along three dimensions: IRP versus PRP, the replenishment

policy (ML versus OU) and the number of vehicles (single versus multiple). It clearly shows

an important gap in the previous research. No exact algorithms have been proposed and

tested for the multiple vehicle IRP and PRP, except for Bard and Nananukul (2010) where

only relatively small instances were solved to optimality compared to the results on the

single vehicle case.

Table 1 Summary of exact algorithms for the deterministic PRP and IRP with single product, single plant and
multiple retailers

Maximum Level (ML) Order-Up-To Level (OU)
Problem Single vehicle Multiple vehicles Single vehicle Multiple vehicles
IRP Archetti et al. (2007) - Archetti et al. (2007) -

[45c/3p/1v] Solyalı and Süral (2011)
[60c/3p/1v],
[15c/12p/1v]

PRP Ruokokoski et al. (2010)† Bard and Nananukul (2010) Solyalı and Süral (2009) -
Archetti et al. (2011b) [10c/2p/5v] [8c/5p/1v]
[14c/6p/1v]‡

† the tests were performed only on the uncapacitated single vehicle case
‡ some instances not solved to optimality
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In this paper, we consider a single product and a PRP network that consists of a pro-

duction plant and multiple customers which have their own storage area. At the begining

of the planing horizon, the production plant and the customers may have initial inventory.

In each period, each customer must have sufficient inventory to satisfy its demand. In

the case of the PRP, the plant must decide whether or not to produce the product and

the quantities to be produced. If production takes place, fixed set up and unit production

costs are incurred. The produced quantities can be transported by a limited number of

capacitated vehicles to the customers and routing costs are charged. The product can also

be stored at the plant or the customers and unit inventory holding costs are incurred. We

consider the cases where the customer replenishment part is controlled by the ML and

OU policies. The replenishment practice is generally in lined with Bard and Nananukul

(2010) and Archetti et al. (2011b) except for the OU policy where we impose the deliv-

ery quantity for each customer by the difference between its current stock level and its

TSL before demand consumption as it is clearly aligned with the concept of the OU pol-

icy, while the inventory level is imposed after demand comsumption (which typically not

known in advance in practice) in Archetti et al. (2011b). It should also be noted that the

replenishment practice in our problem and the IRP presented in Bertazzi et al. (2002),

Archetti et al. (2007) and Solyalı and Süral (2011) are slightly different. In latter studies,

the delivery to the customers must take place before the distribution facility is replenished

in each period, while in our PRP, the quantity produced in period t can be delivered to

customers to satisfy their demand in the same period. These two practices, however, can

be converted to the other as we have shown in the Appendix. In the remainder of this

paper, since the PRP is a generalization of the IRP, we prefer to use the name PRP to

represent both IRP and PRP unless stated otherwise. Note that the name MVPRP isused

to represent the PRP with multi-vehicle (MV) aspect.

The main contributions of our study are fourfold. First, we present strong formulations

and exact algorithms for the IRP and PRP with multiple vehicles, which has received

little attention in the previous literature. Several formulations are presented and branch-

and-cut algorithms are proposed to solve the problem. Second, we propose several valid

inequalities and symmetry breaking constraints to strengthen the formulations, and test

the effect of these inequalities. Third, we adapt a previously developed ALNS procedure for

the MVPRP-ML (Adulyasak et al. 2011) and extend it to the MVPRP-OU, MVIRP-ML
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and MVIRP-OU. Forth, we provide extensive computational results of the new formulation

compared to the branch-and-cut approaches on single vehicle instances in literature.

The rest of this paper is organized as follows. Section 2 presents different formulations

of the MVPRP. Section 3 describes the valid inequalities that are applied to the formu-

lations. The details of the branch-and-cut approaches are discussed in Section 4 and the

details of the heuristic algorithm to calculate upper bounds are presented in Section 5.

This is followed by the discussion of computational experiments in Section 6, and by the

conclusion.

2. MVPRP Formulations.

This section presents the main notation and the mathermatical formulations of the MVPRP

with ML and OU policy.

2.1. Notation.

The PRP is defined on an undirected graph G= (N,E) with the following notations,

Sets:

T set of time periods, indexed by t∈ {1, . . . , l}, and T ′ = T ∪{l+ 1};

N set of plant and customers, indexed by i∈ {0, . . . , n}, where the plant is represented

by node 0 and Nc =N \ {0} is the subset of n customers;

E set of edges, E = {(i, j) : i, j ∈N, i < j};

K set of identical vehicles, indexed by k ∈ {1, . . . ,m};

E(S) set of edges (i, j)∈E that have both end points in S, where S ⊆N is a given set of

nodes;

δ(i) set of edges that have one end point at node i;

Decision variables:

pt production quantity in period t;

Iit inventory at node i at the end of period t;

yt equal to 1 if there is production at the plant in period t, 0 otherwise;

zikt equal to 1 if node i is visited by vehicle k in period t, 0 otherwise;

xijkt if vehicle k travels between node i and node j in period t, 0 otherwise;

qikt quantity delivered to customer i with vehicle k in period t;

Parameters:

u unit production cost;
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f fixed production setup cost;

hi unit inventory holding cost at node i;

cij transportation cost between node i and node j;

dit demand at customer i in period t;

C production capacity;

Q vehicle capacity;

Li maximum or taget inventory level at node i;

Ii0 initial inventory available at node i;

2.2. Multi-Vehicle Formulations for the ML Policy.

In this section, we introduce the formulations for the MVPRP-ML. The first formulation

is an extension of the single vehicle PRP formulation using a vehicle index, while a new

formulation without vehicle index is presented next.

2.2.1. Formulation with Vehicle Index for the ML Policy. To formulate the MVPRP-

ML with vehicle index, we extend the single vehicle PRP formulation used in Archetti

et al. (2007, 2011a), as follows.

min
∑
t∈T

(upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈E

∑
k∈K

cijxijkt) (1)

s.t.

I0,t−1 + pt =
∑
i∈Nc

∑
k∈K

qikt + I0t ∀t∈ T (2)

Ii,t−1 +
∑
k∈K

qikt = dit + Iit ∀i∈Nc,∀t∈ T (3)

pt ≤min{C,
∑
i∈Nc

l∑
j=t

dij}yt ∀t∈ T (4)

I0t ≤L0 ∀t∈ T (5)

Ii,t−1 +
∑
k∈K

qikt ≤Li ∀i∈Nc,∀t∈ T (6)∑
i∈Nc

qikt ≤Qz0kt ∀k ∈K,∀t∈ T (7)

∑
k∈K

zikt ≤ 1 ∀i∈Nc,∀t∈ T (8)

qikt ≤min{Li,Q,
l∑
j=t

dij}zikt ∀i∈Nc,∀k ∈K,∀t∈ T (9)
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(i,j)∈δ(i)

xijkt = 2zikt ∀i∈N,∀k ∈K,∀t∈ T (10)

∑
(i,j)∈E(S)

xijkt ≤
∑
i∈S

zikt− zekt ∀S ⊆Nc, |S| ≥ 2,∀e∈ S,∀k ∈K,∀t∈ T (11)

pt, Iit, qikt ≥ 0 ∀i∈N,∀k ∈K,∀t∈ T (12)

yt, zikt,∈ {0,1} ∀i∈N,∀k ∈K,∀t∈ T (13)

xijkt ∈ {0,1} ∀(i, j)∈E : i 6= 0,∀k ∈K,∀t∈ T (14)

x0jkt ∈ {0,1,2} ∀j ∈Nc,∀k ∈K,∀t∈ T. (15)

The objective function (1) minimizes the total production, setup, inventory and routing

costs. Constraints (2) and (3) are the inventory flow balance at the plant and at the

customers, respectively. Constraints (4) are the setup forcing and production capacity

constraints at the plant: they force the setup variable to be one if production takes place

and limit the production quantity to the minimum of the production capacity and the

total demand in the remaining periods. The inventory quantity at the production facility

at the end of each period is limited by constraints (5) and the inventory quantities at the

customers after delivery cannot exceed their inventory capacities (6). The total quantity

loaded in each vehicle can be at most the vehicle capacity as specified by (7). Constraints

(8) allow each customer to be visited at most once in each period. Constraints (9) allow a

positive delivery quantity from vehicle k to node i in period t only if this node is visited

by the vehicle in period t. Since in the ML policy, it is never optimal to carry inventory

at the end of the planning horizon, the delivery quantity to a customer is limited by the

minimum value between the inventory capacity at the customer, the vehicle capacity or

the total demand of the customer in the remaining periods. Constraints (10) are the degree

constraints. They require the number of edges incident to node i to be 2 if it is visited.

Constraints (11) eliminate subtours for each vehicle.

Archetti et al. (2007, 2011b) also strengthen the formulation using several valid inequal-

ities. We present here the inequalities that are valid for the PRP with capacitated produc-

tion. Note that we extend the original inequilities for the multi-vehicle case.

Denote by t′ and t′′, the earliest period that the plant must produce and the earliest

period that at least once customer must be replenished to prevent stockout, respectively,

i.e., t′ = arg min1≤t≤l{
∑

i∈Nc
max{0,

∑t
j=1 dij − Ii0} − I00 > 0}, and t′′ = mini∈Nc t

′′
i where
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t′′i = arg min1≤t≤l{
∑t

j=1 dij − Ii0 > 0}. Let also κ be the minimum shipping quantity in t′′,

i.e., κ=
∑

i∈Nc
max{0,

∑t′′

j=1 dij−Ii0}. First, these inequalities are used to prevent stockout.

t′∑
t=1

yt ≥ 1 (16)

∑
k∈K

t′′∑
t=1

z0kt ≥
⌈
κ

Q

⌉
(17)

Second, the inequalities below are imposed to strengthen the customer replenishment.

Ii,t−s−1 ≥
s∑
j=0

di,t−j

(
1−

∑
k∈K

s∑
j=0

zik,t−j

)
∀i∈Nc,∀t∈ T, s= 0,1..., t− 1 (18)

Finally, inequalities for the routing part are imposed.

zikt ≤ z0kt ∀i∈Nc,∀k ∈K,∀t∈ T (19)

xijkt ≤ zikt and xijkt ≤ zjkt ∀(i, j)∈E(Nc),∀k ∈K,∀t∈ T (20)

The formulation (1)-(20) is referred to as F (ML)|k.

2.2.2. Formulation without Vehicle Index for the ML Policy. The previous formu-

lation has a significant drawback since the number of variables will grow as the number

of vehicles increases. Alternatively, the routing constraints can be replaced by variables

without a vehicle index. The formulation is presented using the variables q, z and x with

the same notations as the previous section but the vehicle index k is dropped, except for

the variable z0t which is changed to be an integer variable representing the number of

vehicles leaving the production plant in period t. The formulation without vehicle index

can be formulated as follows.

min
∑
t∈T

(upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈E

cijxijt) (21)

s.t. (4)-(5) and

I0,t−1 + pt =
∑
i∈Nc

qit + I0t ∀t∈ T (22)

Ii,t−1 + qit = dit + Iit ∀i∈Nc,∀t∈ T (23)

Ii,t−1 + qit ≤Li ∀i∈Nc,∀t∈ T (24)
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qit ≤min{Li,Q,
l∑
j=t

dij}zit ∀i∈Nc,∀t∈ T (25)

∑
(i,j)∈δ(i)

xijt = 2zit ∀i∈N,∀t∈ T (26)

z0t ≤m ∀t∈ T (27)

Q
∑

(i,j)∈E(S)

xijt ≤Q
∑
i∈S

(zit− qit) ∀S ⊆Nc, |S| ≥ 2,∀t∈ T (28)

pt, Iit, qit ≥ 0 ∀i∈N,∀t∈ T (29)

yt, zit,∈ {0,1} ∀i∈Nc,∀t∈ T (30)

z0t ∈Z+ ∀t∈ T (31)

xijt ∈ {0,1} ∀(i, j)∈E : i 6= 0,∀t∈ T (32)

x0jt ∈ {0,1,2} ∀j ∈Nc,∀t∈ T. (33)

Constraints (22)-(26) are equivalent to (2)-(3), (6) and (9)-(10), respectively. Constraints

(27) limit the number of vehicles leaving the production facility to the number of available

vehicles in each period. Constraints (28) are the subtour elimination and vehicle capacity

constraints. When we divide the inequalities by Q, these constraints have a similar form

as the generalized fractional subtour elimination constraints (GFSECs) for the VRP (Toth

and Vigo 2001). Unlike GFSECs in the VRP, however, we cannot round up the value of

the term qit/Q because it contains the qit variable. We prefer to use the from (28) since

initial tests indicated that the original form of GFSECs is numerically unstable due to the

fractional RHS value.

We can also rewrite inequalities (17)-(20) for the non-vehicle index formulation as follows.

t′′∑
j=1

z0j ≥
⌈
κ

Q

⌉
(34)

Ii,t−s−1 ≥
s∑
j=0

di,t−j

(
1−

s∑
j=0

zi,t−j

)
∀i∈Nc,∀t∈ T, s= 0,1..., t− 1 (35)

zit ≤ z0t ∀i∈Nc,∀t∈ T (36)

xijt ≤ zit and xijt ≤ zjt ∀(i, j)∈E(Nc),∀t∈ T. (37)

The non-vehicle index formulation together with the inequalities in this section and (16)

is referred to as F (ML)|nk.
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2.3. Multi-Vehicle Formulations for the OU Policy.

This section presents the formulations for the MVPRP-OU. Similar to the previous section,

the formulations, with and without vehicle index, are proposed.

2.3.1. Formulations with Vehicle Index for the OU Policy. In the OU policy, when a

customer is visited, the inventory before demand consumption must be replenished to reach

its TSL. To enforce these constraints, one can add the constraints below to the formulation

F (ML)|k (Archetti et al. 2007, 2011b),

qikt ≥Lizikt− Ii,t−1 ∀i∈Nc,∀k ∈K,∀t∈ T. (38)

However, unlike the ML policy where the ending inventory levels at both the produc-

tion plant and customers must be zero in the optimal solution if the inventory costs are

strictly positive, the ending inventory levels under the OU policy can be positive to satisfy

constraints (38). Therefore, constraints (4) and (9) have to be replaced by the following

constraints,

pt ≤Cyt ∀t∈ T (39)

qikt ≤min{Q,Li}zikt ∀i∈Nc,∀k ∈K,∀t∈ T. (40)

Constraints (3), (6), (38) and (40) represent the OU policy. To strengthen the formula-

tion, Archetti et al. (2007) also added the inequalities below.

Ii,t−1 ≥Li
∑
k∈K

zik,t−s−

(
t∑

j=t−s+1

dij

)
∀i∈Nc,∀t∈ T, s= 1,2, ..., t− 1. (41)

The formulation (1)-(3), (5)-(7), (10)-(20), and (39)-(41) is reffered to as WF (OU)|k.

However, it has been shown in Solyalı and Süral (2011) that a stronger version of the

IRP-OU can be obtained using a shortest-path network representation for the customer

inventory replenishment part. This reformulation scheme exploits the characteristic of the

OU policy that the delivery quantity for a customer visited in period t is equal to the

total demand in the interval between t and the previous visit in period v < t. To formulate

a strong MVPRP-OU formulation, we adopt the reformulation presented in Solyalı and

Süral (2011) and extend it using a vehicle index. We define di0 = di,l+1 = 0 and use the

following notation.

Decision variables:
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λikvt equal to 1 if node i is visited by vehicle k in period t and the previous visit is in

period v;

Parameters:

givt total delivery quantity when customer i is visited in period t and the previous visit

is in period v;

eivt total inventory holding cost when customer i is visited in period t and the previous

visit is in period v;

µ(i, t) the latest period after period t that the customer i can be replenished without

having a stockout, µ(i, t) = arg maxt<v≤l+1{gitv + div ≤Li};

π(i, t) the earliest period before period t that the customer i can be replenished without

being stockout, π(i, t) = arg max0≤v<t{givt + dit ≤Li}.

The parameters gitv and eitv can be calculated as follows.

givt =


∑t

j=1 dij + (Li− Ii0− dit) if v= 0∑t
j=v+1 dij if 0< v < t≤ l

0 if t= l+ 1

eivt =

ηivt if t < l+ 1

ηivt−hiLi otherwise,

where

ηivt =

hi
(∑t−1

j=v+1(Ii0−
∑j

l=v dil) + (Li− dit)
)

if v= 0.

hi

(∑t−1
j=v+1(Li−

∑j
l=v dil) + (Li− dit)

)
if v < t≤ l+ 1

A preprocessing can be used to eliminate variables associated with infeasible delivery

quanity givt > Q and givt > Li. The strong formulation, is referred to as F (OU)|k, is as

follows.

min
∑
t∈T

(upt + fyt +h0I0t +
∑

(i,j)∈E

∑
k∈K

cijxijkt) +
∑
i∈Nc

∑
k∈K

∑
t=T ′

t−1∑
v=π(i,t)

eivtλikvt (42)
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s.t. (5), (39), (8)-(15), and

I0,t−1 + pt =
∑
i∈Nc

∑
k∈K

t−1∑
v=π(i,t)

givtλikvt + I0t ∀t∈ T (43)

∑
i∈Nc

t−1∑
v=π(i,t)

givtλikvt ≤Qz0kt ∀k ∈K,∀t∈ T (44)

t−1∑
v=π(i,t)

λikvt = zikt ∀i∈Nc,∀k ∈K,∀t∈ T (45)

∑
k∈K

µ(i,t)∑
t=1

λik0t = 1 ∀i∈Nc (46)

∑
k∈K

t−1∑
v=π(i,v)

λikvt−
∑
k∈K

µ(i,t)∑
v=t+1

λiktv = 0 ∀i∈Nc,∀t∈ T (47)

∑
k∈K

l∑
t=π(i,l+1)

λikt,l+1 = 1 ∀i∈Nc (48)

λikvt ∈ {0,1} ∀i∈Nc,∀k ∈K,∀v, t∈ T (49)

The objective function (42), constraints (43) and (44) are equivalent to (1), (2) and (7),

respectively. Constraints (45) provide the link between the λikvt and zikt variables. Con-

straints (46)-(48) represent the shortest-path network of the OU policy at each customer.

It should be noted that Solyalı and Süral (2011) used the original objective function (1)

and still retain equivalent constraints (3). However, since customer inventory constraints

are already controlled by the new variable λikvt, we use the corresponding inventory cost

eivt associated with variable λikvt and drop the customer inventory constraints in this for-

mulation.

Similar to the formulation presented in Solyalı and Süral (2011), the inequalities (19)-

(20) are also added to strengthen the routing part of the formulation. We further add

(16)-(17) to reinforce the production part.

2.3.2. Formulation without vehicle index for the OU Policy. The non-vehicle index

formulation for the OU policy can be formulated using the same notations as the formation

F (ML)|nk and the variable λ as the previous section, but without vehicle index k. The

formulation, referred to as F (OU)|nk, is as follows.
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min
∑
t∈T

(upt + fyt +h0I0t +
∑

(i,j)∈E

cijxijt) +
∑
i∈Nc

∑
t=T ′

t−1∑
v=π(i,t)

eivtλivt (50)

s.t. (5), (39) , (26)-(27), and

I0,t−1 + pt =
∑
i∈Nc

t−1∑
v=π(i,t)

givtλivt + I0t ∀t∈ T (51)

t−1∑
v=π(i,t)

λivt = zit ∀i∈Nc,∀t∈ T (52)

µ(i,t)∑
t=1

λi0t = 1 ∀i∈Nc (53)

t−1∑
v=π(i,v)

λivt−
µ(i,t)∑
v=t+1

λitv = 0 ∀i∈Nc,∀t∈ T (54)

l∑
t=π(i,l+1)

λit,l+1 = 1 ∀i∈Nc (55)

Q
∑

(i,j)∈E(S)

xijt ≤Q
∑
i∈S

(zit−
t−1∑

v=π(i,t)

givt)λivt ∀S ⊆Nc, |S| ≥ 2,∀t∈ T (56)

λivt ∈ {0,1} ∀i∈Nc,∀v, t∈ T (57)

Constraints (51)-(55) are equivalent to (43), (45)-(48) and , respectively. Constraints

(56) are equivalent to (28). Note that inequalities (16), (34) and (36)-(37) are also added a

priori in our implementation in order to make a fair comparison to the other formulations.

2.4. Formulations for the MVIRP.

All the formulation above can be easily modify to solve the MVIRP where the production

part (i.e., production setup and quantity decisions) is disregarded. First, the production

setup variable yt is set to one, yt = ȳt = 1,∀t ∈ T . Second, the production quantity is set

to the production quantity made available in each period, denote by Bt, by replacing the

production capacity constraints (4) and (39) with,

pt =Btȳt ∀t∈ T (58)

The rest of the formulations remain unchanged.
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3. Valid Inequalities.

In this section, we propose other sets of valid inequalities for the formulations. The

first group of the inequalities is developed for the vehicle index formulations F (ML)|k,

WF (OU)|k and F (OU)|k, while the second group is used to strengthen the non-vehicle

index formulations F (ML)|nk, F (OU)|nk.

3.1. Valid Inequalities for the Vehicle Index Formulations.

Denote by m̄t, the number of dispatched vehicles in period t. In each period t, there are

two main symmetry issues concerning vehicle index. First, in vehicle dispatching, there

are
(
m
m̄t

)
possible options to select m̄t vehicles from the fleet. Second, among the selected

vehicles, there are still m̄t! options to swap the routes that are assigned to each dispatched

vehicle. These two types of symmetry are present in each period, and hence there can be[(
m
m̄1

)
m̄1!
][(

m
m̄2

)
m̄2!
]
...
[(

m
m̄l

)
m̄l!
]

equivalent solutions . For example, for an instance

with 3 periods and 3 vehicles, if 2 vehicles are used in each period, there are
[(

3
2

)
2!
]3

= 216

equivalent solutions that can be obtained by re-indexing the vehicles.

To break the first type of symmetry, we can use the symmetry breaking constraints

(SBC) below to allow vehicle k+1 to be dispatched only if vehicle k is already dispatched.

(SBC0) z0k1 ≥ z0,k+1,t 1≤ k≤m− 1,∀t∈ T.

To resolve the second symmetry issue, we can use one of the following different versions

of symmetry breaking constraints. Note that these constraints cannot be imposed together

but each of them can be used in conjunction with SBC0. The first constraints break the

symmetry of the routes by ordering them according to their total route costs.

(SBC1)
∑

(i,j)∈E

cijxijkt ≥
∑

(i,j)∈E

cijxij,k+1,t 1≤ k≤m− 1,∀t∈ T.

Alternatively, we can impose that the vehicles are ordered according to their total delivery

quantity.

(SBC2)
∑
i∈Nc

qijkt ≥
∑
i∈Nc

qij,k+1,t 1≤ k≤m− 1,∀t∈ T for F (ML)|k and WF (OU)|k

or
∑
i∈Nc

µ(i,t)∑
v=t+1

gitvλiktv ≥
∑
i∈Nc

µ(i,t)∑
v=t+1

gitvλi,k+1,tv 1≤ k≤m− 1,∀t∈ T for F (OU)|k.
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We also use the lexicographic ordering constraints (Sherali and Smith 2001, Degraeve

et al. 2002, Jans 2009) to assign a unique number to each possible set of customers for

a route and we order the vehicles according to their assigned number. In order to ensure

the uniqueness, we use powers of two for the coefficients as described in Jans (2009). This

type of inequalities is efficient because a customer can be part of at most one route. The

lexicographic ordering constraints can be imposed first with respect to customer one only,

next with respect to customer one and two, and so on.

(SBC3)

j∑
i=1

2(j−i)zikt ≥
j∑
i=1

2(j−i)zi,k+1,t ∀j ∈Nc,1≤ k≤m− 1,∀t∈ T.

We can also only use the final constraint of SBC3 including all the customers to impose a

unique ordering in each period:

(SBC4)
n∑
i=1

2(n−i)zikt ≥
n∑
i=1

2(n−i)zi,k+1,t 1≤ k≤m− 1,∀t∈ T.

The computational results of using different SBC are provided in Section 6.2.1.

3.2. Valid Inequalities for the Non-Vehicle Index Formulations.

To strengthen the non-vehicle index formulations, we also add the following inequalities a

priori.

• For the formulation F (ML)|nk,

Qz0t ≥
∑
i∈Nc

qit ∀t∈ T (59)

• For the formulation F (OU)|nk,

Qz0t ≥
∑
i∈Nc

t−1∑
v=π(i,t)

givtλivt ∀t∈ T (60)

Constraints (59) and (60) impose the number of vehicles leaving the production facility

must be sufficient to carry delivery quantities to all customers in each period.

Since GFSECs (28) and (56) are generally weak as described in section 2.2.2, we further

strengthen the formulation by adding the subtour elimination constraints (SECs) below,∑
(i,j)∈E(S)

xijt ≤
∑
i∈S

zit− zet e∈ S,∀S ⊆Nc, |S| ≥ 2,∀t∈ T (61)
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These cuts are used to prevent subtours in each period, but they do not take into account

the vehicle capacity. Therefore, they have to be used together with GFSECs (28) or (56)

in order to generate feasible multi-vehicle routes.

To take into account the periodic routing decisions of the MVPRP, we also add another

set of constraints to strengthen the formulation, called multi-period generalized fractional

subtour elimination constraints (MGFSECs), as follows.

• For the formulation F (ML)|nk,

Q
∑
t∈R

∑
(i,j)∈E(S)

xijt ≤Q
∑
t∈R

∑
i∈S

(zit− qit) ∀S ⊆Nc, |S| ≥ 2, ,∀R⊆ T (62)

• For the formulation F (OU)|nk,

Q
∑
t∈R

∑
(i,j)∈E(S)

xijt ≤Q
∑
t∈R

∑
i∈S

zit− t−1∑
v=π(i,t)

givtλivt

 ∀S ⊆Nc, |S| ≥ 2, ,∀R⊆ T (63)

Similar to the GFSECs (28) and (56), contraints (62) and (63) prevent subtours and

ensure that the number of vehicles is sufficient to carry the delivery quantity to the set of

customers S during the time period set R. These constraints are a combined version of the

GFSECs and equal to GFSECs when |R|= 1.

Denote by ρ(S, r), the minimum number of vehicles must be dispatched to carry

the demands in customer set S during period 1 to r, calculated as ρ(S, r) =⌈∑
i∈S (

∑r
t=1 dit− Ii0)

+
/Q
⌉
. The inequalities below are also imposed.

r∑
t=1

∑
(i,j)∈E(S)

xijt ≥ 2ρ(S, r) ∀S ⊆Nc, |S| ≥ 2, r ∈ T (64)

These constraints ensure that total number of vehicles entering the set of customers S from

period 1 to period t must be sufficient to carry the demands during that period.

The branch-and-cut algorithm that incorporates the three subtour elimination and vehi-

cle capacity cuts is described in the next section.

4. Branch-and-cut Approaches.

Since all the formulations contain an exponentially large number of subtour elimination

constraints, a natural way to solve the problems is to use the branch-and-cut technique. In

this process, the subtour elimination constraints, i.e., constraints (11) for the F (ML)|k,

WF (OU)|k and F (OU)|k, and GFSECs for the F (ML)|nk and F (OU)|nk, are dropped
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and are added iteratively when they are violated at each node of a branch-and-bound tree.

In this section, we provide the details of the branch-and-cut approaches for both types

of formulations. For the variable selection, we first branch on the y, z, and x variables,

respectively. We use the default setting in CPLEX 12.3 to select a specific variable to branch

on. The remaining parameters are set to default where CPLEX employs a best-bound-first

strategy.

4.1. Branch-and-cut for the Vehicle Index Formulations.

To solve the vehicle index formulations F (ML)|k, WF (OU)|k and F (OU)|k, we use an

exact separation algorithm for the TSP by solving a minimum s− t cut problem to detect

violated TSP subtours for each vehicle in each period. This is valid since vehicle tours

are separated by the vehicle index. At each node of the branch and bound tree, if a

violated tour S for vehicle k in period t is found, we add the violated cuts (11) with e=

argmaxi∈S{zikt} to the formulation. We implemented the separation algorithm described

in Ruokokoski et al. (2010) and use the minimum s− t algorithm of the Concorde callable

library (Applegate et al. 2011). Although this separation algorithm is different from the

algorithm presented in Archetti et al. (2007, 2011a) and Solyalı and Süral (2011) where

the heuristic separation algorithm for the TSP (Padberg and Rinaldi 1991) is used, it

is efficient in our branch-and-cut algorithm since all the instances 14c/6p/1v in Archetti

et al. (2011a) which were not solved to optimality, are all solved to optimality within few

seconds and the results presented by Archetti et al. (2007) and Solyalı and Süral (2011)

are all improved in this implementation while using a similar workstation.

We add a few remarks on the vehicle index formulations. First, we have tested a few

possible options of the subtour elimination constraints. The first option is to use constraints

(11) and when a violated cut is detected, add it only for the specific vehicle for which it

was found. The second option is to add this cut for all vehicles in the same period instead

of adding it to the specfic vehicle only. The third option is to use a combined version of

constraints (11), which is also valid,∑
k∈K

∑
(i,j)∈E(S)

xijkt ≤
∑
k∈K

∑
i∈S

zikt−
∑
k∈K

zekt ∀S ⊆Nc, |S| ≥ 2,∀e∈ S,∀t∈ T. (65)

The results indicated that the first option, adding only the violated constraints (11), was

the best cut generation strategy among the three, while the second option was slightly
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worse and the third option was far worse than the other two. Second, similar to the results

provided by Solyalı and Süral (2011) for the single vehicle case, the results of WF (OU)|k

were all worse than the F (OU)|k and F (OU)|nk for multiple vehicle case and we do not

include the results in the experiments.

4.2. Branch-and-cut for the Non-Vehicle Index Formulation.

The three different subtour eliminations, GFSECs ((28) and (56)), SECs (61) and MGF-

SECs ((62) and (63)), are used for the formulations without vehicle index. To detect SECs,

we use the same separation algorithm for the vehicle index formulations as described above

to find and generate the cuts for each period t. For the GFSECs, we use the four heuris-

tic separation algorithms described in Lysgaard et al. (2004) that were proposed for the

CVRP. To generate the cuts, we call the separation algorithms for each period t. Denote

by x̄ijt, q̄it and λ̄ivt, the current values of variables xijt, qit and λivt in the branch and bound

tree. We solve the separation algorithms by setting the weights of edges to x̄ijt and the

delivery quantity for customer i to q̄it for F (ML)|nk and
∑t−1

v=π(i,t) givtλ̄ivt for F (OU)|nk.

Note that the maximum number of subsets produced by the separation algorithms for each

period t is limited to n per call. Then, the violated GFSECs are added to the formulation.

For the MGFSECs, we develop a greedy heuristic separation algorithm to detect the cuts.

Denote by z̄it, the current solution values of variables zit. For each subset R⊆ T , we cal-

culate the value si =
∑

t∈R(q̄it/ dz̄ite) (or si =
∑

t∈R(
∑t−1

v=π(i,t) givtλ̄ivt/ dz̄ite) for F (OU)|nk)

which represents the average delivery quantity to customer i per visit during the period set

R. Customers are ranked according to the value of si in descending order and stored in an

ordered list. Then, an empty set of customers S and an empty set of violated sets ξ(S) are

created. The separation algorithm starts by adding the first customer in the ordered list to

S and checks whether the MGFSEC of the S is violated. The next customer is then added

to S and the algorithm checks for the MGFSEC again, and so on. The violated MGFSECs

are stored in ξ(S). If a violated MGFSEC is found or all the customers in the ordered list

are added to S, the set S is reset to empty and the first customer in the ordered list is

removed, then the algorithm starts again by adding the first customer in the ordered list

to S. This process is repeated until the ordered list is empty or n violated cuts are found.

In our implementation, we consider the subset R of all two and three consecutive periods

in T .
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The separation algorithm above can also used to generate the cuts (64). We first set

R= {t : 1≤ t≤ r},∀r ∈ T or the set from time period 1 to r ∈ T . and use the demand dit in

place of the delivery quantity q̄it. The algorithm is then set to detect the cuts (64) instead

of MGFSECs.

Since it is very time comsuming to solve all the separation algorithms at every node of

the branch-and-bound tree, we use the following cut generation strategy for the non-vehicle

index formulations. At the root node, all the separation algorithms are called to generate

the GFSECs, SECs, MGFSECs and (64). At each further node of branch-and-bound tree,

only the GFSECs and SECs are considered in the following sequence: (1) the seperation

algorithm of the SECs is called, (2) If there is no violated SECs, the separation algorithms

for the GFSECs are called.

The process as described above can significantly improve the performance of the algo-

rithm since using GFSECs alone is inefficient due to the fractional coefficients. Using the

cuts SECs can efficiently eliminate subtours and create initial vehicle route, while adding

GFSECs and MGFSECs can eliminate the exceeded vehicle capacity routes. The compu-

tational result in Section 6.3 show a significant performance improvement by using the

three cuts together compared to using GFSECs alone.

5. Optimization-Based Adaptive Large Neighborhood Search
(Op-ALNS) Heuristic.

In this section, we present a heuristic to calculate upper bound used in the branch-and-cut

algorithms. We use a heuristic based on the adaptive large neighborhood search (ALNS)

framework that is proposed by Ropke and Pisinger (2006) for the VRP to solve the

MVPRP. The basic idea of the ALNS is to repeatedly destroy and repair a solution using

several heuristic operators to seek for improvement. These operators are probabilistically

selected based on empirical scores related to the success of operators. We use an adaptation

of the ALSN framework to handle the binary variables, and the remaining continuous vari-

ables are evaluated by solving a network flow model that is embedded into the operators

of the ALSN. This procedure is called optimization-based adaptive large neighborhood

search (Op-ALNS).

5.1. The Op-ALNS for the ML policy.

The implementation of the Op-ALNS for the MVPRP-ML can be found in Adulyasak et al.

(2011). The procedure consists of two main phases, i.e., initialization and improvement.
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In the initialization phase, a pool of different initial solutions is constructed by solving

two decomposed subproblems. The first subproblem is solved to determine the production,

inventory levels and assigned customers to be visited, and the second subproblem is used to

determine the route for each vehicle. After the first initial solution is generated, a different

initial solution is created using the local branching technique (Fischetti and Lodi 2003). For

the PRP, since production setup decisions usually form an important part of the objective

function, we generate initial solutions with different production setups. Denote by s, the

solution index, and ȳst , the value of the production setup variable yt in solution s. We

add the local branching inequality below to the first subproblem to generate the initial

solution s+ 1. The local branching constraints are added cumulatively. Note that we set

the maximum number of the initial solutions in the pool to l for the MVPRP.∑
yt|ȳst =1

(1− yt) +
∑

yt|ȳst =0

yt ≥ 1. (66)

For the IRP, since production setups are irrelevant, we generate initial solutions with

diffent customer visit decisions. Denote by z̄sit, the value of the customer visit variable zit

in solution s. The local branching inequality (66) is replaced by the inequality below to

generate an initial solution s+ 1,

∑
zit|z̄sit=1

(1− zit) +
∑

zit|z̄sit=0

zit ≥

⌈
0.25

∑
i∈Nc

∑
t∈T

z̄sit

⌉
. (67)

The inequality (67) enforces at least 25% of the total customer visits over the horizon is

changed. The maximum number of the initial solutions in the pool is set to 10 for the

MVIRP.

The improvement phase starts when maximum number of initial solutions is gener-

ated. The integer and binary variables x and z are handled by ALNS operators and the

remaining continuous variables p, I and q are set by solving the minimum cost flow (MCF)

problem. The process starts by selecting an initial solution from the top of the initial

solution pool. At each iteration in this phase, two types of operators, called selection and

transformation, are called to seek for improvement. The selection operators are used to

select some customer-period combinations, called node candidates, and they are put into

an ordered list. These node candidates are removed and reinserted by the transformation

operators. One selection and one transformation operator are probabilistically selected at
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each iteration based on empirical scores. In the transformation process, once node can-

didates are moved according to the operator, all the binary variables are fixed and the

MCF is called to determine the corresponding optimal continuous variables. The new solu-

tions found during the transformation are accepted according to a simulated annealing

criterion. The process stops after a given number of iterations have been performed. We

refer to Adulyasak et al. (2011) for further details and all the parameter settings in the

improvement phase.

5.2. The Op-ALNS for the OU policy.

Unlike the ML policy where the selection and transformation operators could handle infea-

sible routes effectively by repeatedly reallocating delivery quantity, it is much more difficult

to remove and reinsert node candidates from infeasible routes in the OU policy since the

delivery quantity is defined by the difference of inventory level and TSL. Thus, it is easier

to start from initial solutions with feasible routes in the initialization process to ensure

that feasible solutions can be obtained at the end of the process. We simply solve the

formulation with vehicle index to take into account the vehicle capacity for each vehi-

cle separately. We denote by σi = min{2c0i,minj,k∈N,j 6=k(cij + cik)}, or the minimum value

between the cost of making a round trip from the production facility and the cost to the

nearest two neighbors of customer i. The first subproblem in the initialization phase for

the MVPRP-OU and MVIRP-OU is as follows.

min
∑
t∈T

(upt + fyt +h0I0t +
∑
i∈Nc

∑
k∈K

σizikt) +
∑
t∈T ′

∑
i∈Nc

∑
k∈K

l+1∑
v=1

eitvλiktv (68)

subject to (4), (8), (12)-(13) (43)-(49).

The best version of the SBCs from Section sub:Inequalities-k is also added to improve

the performance of the formulation. Note that the delivery quantity variable qikt is calcu-

lated as qikt =
l+1∑
v=1

gitvλ̄iktv. After the first subproblem is solved, the routes for the vehicles

are identified by solving the traveling salesman problem (TSP) for each vehicle individu-

ally. Similar to Adulyasak et al. (2011), we construct the TSP tours using the GENIUS

procedure (Gendreau et al. 1992) and improve them by the 3-opt procedure (Lin 1965).

Additionally, to solve the MCF for the OU policy, we set the inventory level of a visited

customer i in period t equal to Li− dit. The remaining of the Op-ALNS algorithm for the

OU policy is the same as the ML policy.
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6. Computational Experiment.

The algorithms are coded in C# on MonoDevelop 2.2 using CPLEX 12.3. The experiments

on the branch-and-cut approaches have been executed on a workstation with AMD Opteron

2.40GHz and 16GB of RAM, while the Op-ALNS has been executed on with a workstation

with 2.10 GHz CPU and 2 GB of RAM. The maximum computing time is limited to 3600

seconds.

We report the average computing times in seconds and the average number of nodes in

the column Time and Node, respectively. Columns %LB show the percentage of the final

lower bounds of a specific approach with respect to the best upper bounds found among all

the approaches. Boldface letters are used to indicate the best results. If all instances in a

problem size are solved to optimality, we put boldface letters on the lowest total computing

time, otherwise boldface letters are put on the best average percentage of lower bounds.

6.1. Details of the Instances.

We create two test sets from the instance presented in literature. The first test set consists

of MVPRP instances and the second test set consists of MVIRP instances. The details of

the instance sets are as follows.

6.1.1. Details of the MVPRP Instances. There are two published MVPRP datasets

that are used in several studies, i.e., Boudia et al. (2005) and Archetti et al. (2011b), but

both datasets were designed for heuristics and they are too large for our exact algorithms.

We then consider generating a smaller dataset based on the data set from the literature

for our computational experiment. Since the Archetti et al. (2011b) dataset takes into

account many different aspects, e.g., inventory costs at customers, initial inventory, and

varying transportation and production costs, while the Boudia et al. (2005) dataset has

zero inventory cost at the customers and the problem sizes are generally too large, we

decided to use a subset of the Archetti et al. (2011b) dataset to create our test set.

The Archetti et al. (2011b) dataset consists of instances with 6 periods. Each problem

size contains 4 classes and each instance type has 5 instance sets with different node

coordinates. The first class contains standard instances. The second and the third classes

are identical to the first but with high unit production costs and high transportation

costs, respectively. The fourth class consists of instances from the first and second class

but with no customer inventory cost. We generate our instances using the instances from
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the four classes to ensure that we consider many different problem characteristics. The

problem size with 50 customers is used to generate our dataset. There are four instances

per problem size. The number of vehicles is set to m= 2,3 for the instances with n≤ 15

and to m= bn/10c+1 for the instances with n> 15. The details of the instance generation

are provided in the Appendix. We summarize the parameters of the two instance sets in

table 2.

Table 2 Characteristics of the
MVPRP Instance Sets

n l m C L0 Q
10 3/6/9 2 304 152 198
10 3/6/9 3 304 152 132
15 3/6/9 2 470 235 198
15 3/6/9 3 470 235 132
20 3/6/9 3 540 270 189
25 3/6/9 3 700 350 189
30 3/6/9 4 768 384 171
35 3/6/9 4 948 474 207
40 3/6/9 5 1256 628 216

6.1.2. Details of the MVIRP Instances. We adopt the IRP instances for the single

vehicle are presented in Archetti et al. (2007). This instance set was used in several liter-

ature (e.g., Archetti et al. 2007, 2011a, Solyalı and Süral 2011, Coelho et al. 2012). The

instance set consists of 5 to 50 customers (with an increment of 5) with 3 periods and 5 to

30 customers with 6 periods. There are two main groups, i.e., low inventory costs and high

inventory costs, and five instances per instance size in each group. To generate the MVIRP

instances, we and simply divided the original vehicle capacity by the desired number of

vehicles and rounded down to the nearest integer value. We use the instances with 5 to

30 customers from the instances with 3 periods and 5 to 15 customers from the instances

with 6 periods in our experiment. The number of vehicles is set using the same method

as the MVPRP instances. As we mentioned earlier, since the timing of the replenishment

process in our paper and Archetti et al. (2007) are different, the details of the conversion

are presented in the Appendix section.

6.2. Effect of Valid Inequalities.

This section presents the analysis of the inequalities in section 3. The first part discusses

the effect of of the symmetry breaking constraints used to reinforce the vehicle index
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formulations as presented in Section 3.1 and the second part is the results of imposing

valid inequalities in Section 3.2 to strengthen the non-vehicle index formulations. The

experiments were conducted on the instances with n≤ 15.

6.2.1. Effect of Vehicle Symmetry Breaking Constraints on the Vehicle Index For-

mulations. We analyze the effect of symmetry breaking constraints SBC0 and SBC0

together with one of the other constraints SBC1-SBC4 for the formulation F (ML)|k and

F (OU)|k. The results on the MVPRP and MVIRP instances that are solved to optimality

are shown in Table 3 and 4, respectively and the results on the instances that could not be

solved to optimality are reported in Table 5 and 6, respectively. The column hi in Table

4 and 6 indicates the group of the MVIRP instances, i.e., low (L) or high (H) inventory

costs. In our test, we use the default setting in CPLEX which allows CPLEX to detect

and generate its own symmetry breaking constraints.

Table 3 Results of using different symmetry breaking constraints on the MVPRP instances were solved to optimality

n m l None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4
Time Node Time Node Time Node Time Node Time Node Time Node

MVPRP-ML
10 2 3 0.5 12 0.4 3 0.3 3 0.4 2 0.3 1 0.4 1
10 3 3 3.3 88 1.7 24 1.7 13 1.7 15 1.0 11 1.0 14
15 2 3 7.1 109 5.0 55 3.1 21 5.4 58 4.7 63 4.8 66
15 3 3 259.9 3614 85.3 884 54.0 486 92.4 839 53.8 537 47.5 486
10 2 6 12.9 343 4.6 31 5.5 40 5.2 33 2.5 20 3.6 34
10 3 6 206.1 3588 48.1 675 35.6 337 37.8 423 18.5 221 22.7 295
15 2 6 396.4 2435 341.1 1971 159.3 719 374.6 1438 162.1 957 159.4 873
10 2 9 128.4 1815 77.9 981 40.2 299 56.7 513 30.9 274 35.6 350
10 3 9 3600.0(4) 20059 2407.6(1) 18138 966.9 6377 1740.9(1) 12179 933.8 7557 754.8 6967
Average 512.7 3562 330.2 2529 140.7 921 257.2 1722 134.2 1071 114.4 1009
MVPRP-OU
10 2 3 0.8 12 0.8 13 0.8 10 0.9 19 0.8 19 0.7 8
10 3 3 2.2 85 1.9 77 1.8 51 2.6 80 1.9 47 1.6 36
15 2 3 66.9 1775 58.7 1557 45.6 1037 86.5 2033 31.0 745 45.4 1064
15 3 3 99.8 1616 94.3 1395 106.4 1249 98.6 1166 29.9 328 27.3 287
10 2 6 1.2 7 0.9 3 0.9 5 1.0 3 1.0 4 0.8 3
10 3 6 3.7 24 3.1 13 3.6 15 3.4 11 2.9 11 2.5 8
15 2 6 25.3 165 22.1 136 23.4 101 23.6 119 17.4 86 23.5 123
15 3 6 332.0 1466 325.0 1372 183.8 540 320.2 1020 171.4 587 147.9 493
10 2 9 40.6 519 29.5 355 26.1 226 24.2 226 17.8 164 21.5 203
10 3 9 835.9 7228 573.5 4987 137.4 758 388.3 2448 151.4 915 155.5 973
15 2 9 2120.4(2) 5766 2122.8(2) 5766 1823.3(1) 4649 2161.0(2) 6125 1871.3 5740 2126.9(2) 5544
Average 320.8 1696 293.9 1425 213.9 785 282.7 1204 208.8 786 232.1 795

(−) indicates the number of instances (out of 4) were not solved to optimality

Table 7 provides a summary of the time reduction factors for each approach, calculated

as the average computing time spent to solve an instance size corresponding to Table 3-6

without using any of our SBCs, divided by the average computing time of using each cut

strategy. A time factor equal to 2 means the algorithm spent 2 times shorter by using the

SBC strategy than by using no additional SBCs.



Adulyasak, Cordeau, and Jans: Branch-and-Cut for the MVPRP
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 4 Results of using different symmetry breaking constraints on the MVIRP instances were solved to optimality

n m l hi None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4
Time Node Time Node Time Node Time Node Time Node Time Node

MVIRP-ML
5 2 3 L 0.4 146 0.3 75 0.3 44 0.3 63 0.2 30 0.2 35
5 3 3 L 5.5 2377 1.4 361 1.0 167 1.7 391 0.6 130 0.7 159
10 2 3 L 3.9 277 3.1 167 3.2 170 3.1 161 2.1 85 2.5 131
10 3 3 L 226.5 14127 82.2 4281 44.0 1850 67.5 2955 18.5 847 20.3 951
15 2 3 L 27.5 639 11.4 223 11.8 194 12.1 228 10.1 157 10.0 168
15 3 3 L 885.0(1) 10696 321.3 4929 174.5 2180 323.6 5329 67.6 1060 67.9 1047
5 2 3 H 0.4 121 0.4 87 0.3 51 0.3 53 0.2 20 0.2 28
5 3 3 H 4.4 1893 1.4 411 1.1 221 1.4 305 0.4 80 0.6 139
10 2 3 H 4.1 277 3.8 228 3.2 156 2.9 138 2.9 132 1.9 68
10 3 3 H 148.6 8841 51.3 2534 38.8 1653 61.1 2928 16.8 744 18.9 976
15 2 3 H 21.8 456 12.5 227 10.4 148 15.5 267 7.5 102 11.3 171
15 3 3 H 950.3(1) 13449 291.9 4171 127.4 1662 274.5 4383 62.1 891 63.8 896
5 2 6 L 37.6 9903 23.8 5900 8.3 1752 19.5 4328 5.5 1158 5.8 1226
5 3 6 L 3600.0(5) 402827 3590.4(4) 457099 371.9 55557 2939.5(3) 364231 186.5 34304 172.0 32258
10 2 6 L 1363.5 44425 1241.8 37814 416.3 11688 863.7 25449 197.1 6296 257.6 8335
15 2 6 L 3205.7 15731 2630.1 14530 1974.8 9604 2856.7 15499 1403.6 9819 1632.5 11431
5 2 6 H 32.3 8278 20.9 5027 6.4 1243 14.6 2979 4.3 856 5.3 1109
5 3 6 H 3600.0(5) 422362 3169.3(3) 424158 310.3 42621 2823.0(2) 361287 118.5 21290 137.3 25457
10 2 6 H 1317.5(1) 38066 1364.8(1) 41694 359.1 10348 779.3 23235 176.6 5559 181.0 5369
15 2 6 H 3052.5(1) 16450 2508.9(1) 13658 1709.5(1) 8658 2280.7(1) 13287 1033.7 6739 937.8 6749
Average 924.4 50567 766.5 50879 278.6 7498 667.0 41375 165.7 4515 176.4 4835
MVIRP-OU
5 2 3 L 0.2 2 0.2 0 0.2 0 0.2 0 0.1 0 0.1 0
5 3 3 L 0.2 5 0.2 3 0.3 0 0.4 4 0.1 0 0.1 0
10 2 3 L 6.1 336 5.2 270 5.1 225 6.3 313 3.5 149 4.1 182
10 3 3 L 24.6 806 16.4 483 20.9 531 25.2 673 8.6 171 8.9 205
15 2 3 L 18.4 248 17.8 238 20.2 247 20.9 288 9.9 102 12.7 142
15 3 3 L 166.6 1338 84.7 657 94.9 621 133.9 998 48.1 298 35.1 204
5 2 3 H 0.2 0 0.2 0 0.3 0 0.2 0 0.0 0 0.1 0
5 3 3 H 0.2 3 0.1 0 0.2 0 0.3 5 0.1 0 0.1 0
10 2 3 H 6.2 355 5.7 313 5.2 233 6.3 308 3.8 165 3.4 154
10 3 3 H 29.1 1010 17.0 544 13.6 331 19.5 507 8.7 192 9.8 246
15 2 3 H 18.1 252 14.8 209 23.2 307 23.9 352 12.2 146 11.1 122
15 3 3 H 172.1 1380 83.4 639 86.5 500 191.6 1244 33.7 216 38.0 242
5 2 6 L 3.6 244 3.9 259 3.4 113 3.3 193 2.2 86 2.4 106
5 3 6 L 1.7 153 1.6 142 1.0 29 1.1 36 0.2 0 0.3 1
10 2 6 L 1381.7 28207 863.9 19095 477.0 9439 853.5 17294 356.8 7667 328.5 7726
15 2 6 L 3548.6(4) 13596 3008.2(3) 11181 2182.6(1) 9031 3116.4(2) 13116 1382.5 6026 1337.4 6021
5 2 6 H 3.5 262 3.4 271 3.1 72 3.8 245 1.9 92 2.0 91
5 3 6 H 1.0 37 1.2 80 1.3 30 1.0 21 0.2 0 0.2 1
10 2 6 H 1361.0 27535 814.1 17833 508.5 10034 548.5 11546 327.8 7280 300.1 6740
15 2 6 H 3600.0(4) 13558 2931.3(3) 12738 2199.0(1) 8523 3185.4(3) 13095 961.1 4604 1628.9 6706
Average 517.1 4466 393.7 3248 282.3 2013 407.1 3012 158.1 1360 186.2 1444

(−) indicates the number of instances (out of 5) were not solved to optimality

Table 5 Results of using different symmetry breaking constraints on the MVPRP instances not solved to optimality

n m l None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4
Time Node Time Node Time Node Time Node Time Node Time Node

MVPRP-ML
15 3 6 98.8(2) 8482 99.1(2) 4562 99.6(2) 3687 99.3(2) 3633 100.0(1) 4386 100.0(1) 4131
15 2 9 98.7(3) 3335 98.8(2) 7405 99.0(2) 3936 99.0(2) 6677 99.0(2) 4369 99.0(2) 4810
15 3 9 95.9(4) 3600 95.9(4) 3423 95.8(4) 2780 95.9(4) 2705 96.3(4) 3733 96.3(4) 3867
MVPRP-OU
15 9 3 96.9(4) 3600 96.8(4) 4227 96.9(4) 3717 96.6(4) 4025 97.2(4) 4016 97.0(4) 3978

(−) indicates the number of instances (out of 4) were not solved to optimality

The results clearly show the additional benefits of using the SBCs compared to the SBCs

generated solely by CPLEX. The original formulation without any SBC provides the worst
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Table 6 Results of using different symmetry breaking constraints on the MVIRP instances not solved to optimality

n m l hi None SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4
Time Node Time Node Time Node Time Node Time Node Time Node

MVIRP-ML
10 3 6 L 86.1(5) 34559 87.8(5) 36108 88.9(5) 32218 88.0(5) 33413 94.3(4) 46785 93.5(5) 47282
15 3 6 L 83.4(5) 6098 84.2(5) 6628 85.4(5) 6154 83.9(5) 6240 90.7(5) 8326 91.5(5) 8144
10 3 6 H 91.2(5) 34044 92.5(5) 34655 93.5(5) 31797 92.7(5) 34347 96.3(3) 46628 96.4(4) 44491
15 3 6 H 90.9(5) 5984 91.3(5) 6479 92.2(5) 5540 91.6(5) 6353 95.9(5) 8344 95.2(5) 8227
Average 87.9 20171 89.0 20967 90.0 18927 89.1 20088 94.3 27521 94.1 27036
MVIRP-OU
10 3 6 L 87.7(5) 28023 89.1(5) 27507 90.5(5) 25434 88.1(5) 26042 96.1(3) 24165 95.5(3) 24035
15 3 6 L 79.2(5) 6151 80.9(5) 6431 80.2(5) 5506 80.3(5) 7085 86.2(5) 5544 86.5(5) 6319
10 3 6 H 92.1(5) 28007 93.1(5) 28331 93.2(5) 23401 92.2(5) 26769 97.0(3) 25265 97.3(3) 26527
15 3 6 H 87.4(5) 6149 87.9(5) 6542 88.2(5) 5762 87.8(5) 6506 91.7(5) 6176 90.9(5) 5437
Average 86.6 17083 87.8 17203 88.0 15026 87.1 16600 92.7 15287 92.5 15580

(−) indicates the number of instances (out of 5) were not solved to optimality

Table 7 Summary of the time reduction factors by using each
SBC strategy on instances solved to optimality

SBC0 SBC0+1 SBC0+2 SBC0+3 SBC0+4
MVPRP-ML
Min 1.16 1.49 1.06 1.52 1.35
Max 4.29 5.79 5.45 11.11 9.07
Avg 2.12 3.12 2.28 4.25 3.89
MVPRP-OU
Min 0.97 0.94 0.77 0.92 1.00
Max 1.46 6.08 2.15 5.52 5.38
Avg 1.17 1.70 1.15 2.03 2.01
MVIRP-ML
Min 1.04 1.21 1.16 1.44 1.58
Max 3.95 7.46 3.46 15.31 14.89
Avg 2.31 3.38 2.29 6.86 6.33
MVIRP-OU
Min 0.83 0.68 0.49 1.49 1.44
Max 2.06 2.15 1.49 5.11 4.75
Avg 1.32 1.20 0.91 2.88 2.79

results and adding SBC0 could generally improve the computing times and reduce the num-

ber of nodes in the branch-and-bound tree. The combination of SBC0 together with one

of the other SBCs could further speed up the solving process, except for the SBC2 where

some results are worse than using CPLEX cuts alone. The cut strategies SBC0+SBC3

and SBC0+SBC4 provide good results, but SBC0+SBC3 is slightly better in overall. The

average time factor reductions obtained by using SBC0+SBC3 within the maximum com-

puting time limit of one hour are 4.25, 2.03, 6.86 and 2.88 for the MVPRP-ML, MVPRP-

OU, MVIRP-ML and MVPRP-OU instances, respectively. By adding SBC0+SBC3 to

the F (ML)|k and F (OU)|k formulations, it could also solve 31 instances that could not

be solved to optimality using the formulations alone. We then consider the formulations

F (ML)|k and F (OU)|k with SBC0+SBC3 in the remaining computational experiments.
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6.3. Effect of Valid Inequalities for the Non-Vehicle Index Formulations.

In this section, we test the effect of the valid inequalities and the branch and cut strategy

that we implemented for the formulation F (ML)|nk and F (OU)|nk. First, we test the

effects of the valid inequalities on the lower bounds at the root node of the branch-and-

bound tree. To avoid misinterpretation due to the impact of the CPLEX’s cuts, we conduct

the experiments without the CPLEX’s cuts. The average lower bounds are shown in Table

8 and 9. The numbers presented are equal to the average lower bounds at the root node

compared to the optimal solutions or the best upper bounds if the instances that were not

solved to optimality. Each column shows the results of using each cut presented in Section

(3.2) where the column None and All present the results without using any additional cuts

and all cuts together, respectively.

Table 8 Effects of the valid inequalities on lower bounds at the root node on the MVPRP
instances.

n m l MVPRP-ML MVPRP-OU
None (59) (61) (62) (64) All None (60) (61) (63) (64) All

10 2 3 98.0 98.0 98.8 98.0 98.9 100.0 96.9 97.1 97.2 97.2 96.9 97.3
10 3 3 97.2 96.9 98.2 97.2 97.5 98.7 96.6 96.8 96.6 96.8 96.6 96.8
15 2 3 96.4 96.4 98.2 96.5 96.4 98.2 88.0 91.1 88.3 89.0 88.0 91.8
15 3 3 95.1 95.2 97.1 95.4 95.7 97.6 88.4 90.9 88.3 89.4 88.2 91.3
10 2 6 89.5 89.5 91.3 89.8 89.7 91.6 94.5 94.5 94.8 94.5 94.5 94.8
10 3 6 88.9 88.9 90.4 89.1 89.5 91.0 94.4 94.4 94.6 94.4 94.5 94.7
15 2 6 90.4 90.5 92.1 90.6 90.6 92.4 94.5 94.6 94.9 94.6 94.6 94.9
15 3 6 89.2 89.5 90.9 90.1 89.6 91.5 93.9 94.0 94.3 94.1 93.9 94.3
10 2 9 95.0 95.0 96.2 95.1 95.3 96.5 96.2 96.2 97.2 96.5 96.3 97.3
10 3 9 94.3 94.3 95.4 94.5 94.5 96.3 95.5 95.6 96.3 96.0 95.7 96.6
15 2 9 93.3 93.3 94.6 93.4 93.5 94.9 94.9 95.2 96.1 95.3 95.1 96.5
15 3 9 92.0 91.8 92.8 92.4 92.5 93.7 94.0 94.1 94.8 94.3 94.3 95.1
Average 93.3 93.3 94.7 93.5 93.7 95.2 94.0 94.5 94.5 94.4 94.0 95.1

The results show that adding all the cuts together generally provide the best lower

bounds and it has more effect on larger instance sizes. To see the effects of using these cuts

on our exact algorithms, we perform the tests and the results are shown in Table 10 and

Table 11. The results of the branch-and-cut without and with additional valid inequalities

in Section (3.2) are shown in Columns F (ML)|nk, F (OU)|nk and Columns F (ML)|nk+,

F (OU)|nk+, respectively.

We can see that applying all the inequalities in Section 3.2 could provide significant

improvements in the branch-and-cut procedure for both formulations F (ML)|nk and

F (OU)|nk in terms of lower bounds (both at the root node and final lower bounds),

computing times and the number of nodes in branch and bound tree. We then use the

formulations F (ML)|nk+ and F (OU)|nk+ in the remaining of the computational test.
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Table 9 Effects of the valid inequalities on lower bounds at the root node on the MVIRP
instances.

n m l hi MVPRP-ML MVPRP-OU
None (59) (61) (62) (64) All None (60) (61) (63) (64) All

5 2 3 L 86.6 86.2 87.7 86.8 92.9 93.9 92.0 92.1 93.7 92.6 94.1 95.8
5 3 3 L 83.7 83.2 84.3 84.7 88.2 89.5 86.0 86.6 87.1 86.2 88.3 88.8
10 2 3 L 86.1 86.1 86.9 86.0 90.7 91.3 82.2 81.0 84.7 82.7 83.3 85.2
10 3 3 L 79.9 78.8 83.7 81.0 88.1 89.1 83.5 82.3 87.0 85.8 85.5 89.5
15 2 3 L 86.6 86.3 89.4 86.5 90.1 92.1 81.5 80.2 86.5 81.6 82.1 85.4
15 3 3 L 81.4 81.4 86.2 81.8 85.4 88.9 81.3 80.7 87.7 82.0 81.4 86.9
5 2 3 H 91.5 91.4 92.3 91.7 95.5 96.0 94.6 94.6 95.7 95.0 96.1 97.2
5 3 3 H 88.6 88.6 89.4 89.0 92.0 93.0 90.1 90.4 90.9 90.2 91.8 92.2
10 2 3 H 93.3 93.3 93.8 93.3 95.7 95.7 90.7 90.1 92.0 91.0 91.2 92.4
10 3 3 H 89.3 88.8 91.4 89.9 93.2 94.2 90.5 89.7 92.6 92.0 91.4 94.3
15 2 3 H 94.1 93.9 95.5 93.9 95.4 96.6 91.2 90.6 93.6 91.2 91.4 93.1
15 3 3 H 91.1 91.0 93.4 91.2 92.5 94.5 90.2 90.1 93.8 90.9 90.6 93.6
5 2 6 L 75.6 75.1 77.3 79.5 82.4 83.1 85.1 83.5 86.4 86.2 86.3 87.8
5 3 6 L 83.0 82.3 83.8 83.9 87.3 86.4 84.5 85.4 84.5 85.0 85.8 86.6
10 2 6 L 73.3 72.8 74.9 75.5 78.2 79.5 80.0 80.1 81.9 82.5 84.1 86.8
10 3 6 L 72.8 73.2 75.6 76.9 80.0 82.7 78.1 76.6 80.8 81.5 80.9 83.2
15 2 6 L 71.9 72.2 75.7 73.3 74.6 79.2 81.4 81.2 85.2 82.4 82.6 87.6
15 3 6 L 69.0 69.7 72.5 71.6 71.1 77.3 73.7 74.2 77.1 75.6 74.5 79.4
5 2 6 H 85.7 84.7 85.8 87.3 88.0 88.8 90.3 89.3 91.2 90.9 90.8 92.1
5 3 6 H 88.4 88.8 88.8 89.0 91.0 90.3 88.9 89.5 88.9 89.1 89.7 90.3
10 2 6 H 84.7 83.7 85.3 86.4 87.3 88.2 87.8 87.8 88.9 89.3 90.4 91.7
10 3 6 H 81.9 83.2 85.0 85.9 86.8 89.1 84.8 84.5 87.3 88.0 86.9 89.4
15 2 6 H 85.6 85.8 87.5 86.5 86.9 89.2 90.1 90.0 92.2 90.9 90.8 93.4
15 3 6 H 83.2 83.3 85.1 83.9 84.3 86.7 84.2 84.0 85.9 85.1 84.6 87.7
Average 79.6 79.6 81.4 81.6 83.1 85.0 84.1 83.8 85.8 85.6 85.6 88.0

Table 10 Effects of the valid inequalities on the branch-and-cut algorithm on MVPRP instances.

n l m MVPRP-ML MVPRP-OU
F (ML)|nk F (ML)|nk+ F (OU)|nk F (OU)|nk+

%LB Time Node %LB Time Node %LB Time Node %LB Time Node
10 2 3 100.0 0.3 12 100.0 0.1 0 100.0 0.3 13 100.0 0.3 8
10 3 3 100.0 0.6 71 100.0 0.4 17 100.0 0.4 13 100.0 0.3 5
15 2 3 100.0 40.8 4203 100.0 15.6 918 100.0 329.8 17432 100.0 139.8 10223
15 3 3 100.0 275.0 30747 100.0 58.9 3039 100.0 967.3 39767 100.0 428.6 28676
10 2 6 100.0 6.9 716 100.0 1.0 6 100.0 0.5 5 100.0 0.3 0
10 3 6 100.0 40.6 4687 100.0 19.8 1506 100.0 0.6 5 100.0 0.7 6
15 2 6 99.3(4) 3600.0 100687 99.8(1) 1048.8 16217 100.0 75.3 2208 100.0 53.1 1333
15 3 6 98.9(4) 3600.0 77402 99.2(4) 3600.0 64402 100.0 322.4 10196 100.0 117.8 2802
10 2 9 100.0 182.4 10872 100.0 53.5 1907 100.0 15.7 566 100.0 9.0 200
10 3 9 99.7(3) 2767.0 125261 100.0 1454.5 77948 100.0 58.3 3045 100.0 43.6 1789
15 2 9 98.8(4) 3600.0 33291 99.3(4) 3600.0 27380 98.9(4) 3600.0 45068 99.1(3) 3600.0 34038
15 3 9 97.9(4) 3600.0 32155 98.2(4) 3600.0 23677 98.0(4) 3600.0 33266 97.9(4) 3600.0 23592

(−) indicates the number of instances (out of 4) were not solved to optimality

6.4. Quality and Effectiveness of Initial Upper Bounds using the Op-ALNS.

The average results of the Op-ALNS on MVPRP and MVIRP instances are provided in

Table 12 and 12, respectively. Column %Diff indicates the percent difference of the total

costs obtained by the Op-ALNS from the optimal objective value or the best upper bound

if the instances were not solved to optimality.

The Op-ALNS could generally provide high quality solutions on the MVPRP instances

where the differences from the optimal solutions or best upper bounds are 1.2% and 0.8%

for the MVPRP-ML and MVPRP-OU, respectively. The results on the MVIRP are not as
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Table 11 Effects of the valid inequalities on the branch-and-cut algorithm on MVIRP instances.

n l m hi MVIRP-ML MVIRP-OU
F (ML)|nk F (ML)|nk+ F (OU)|nk F (OU)|nk+

%LB Time Node %LB Time Node %LB Time Node %LB Time Node
5 2 3 L 100.0 0.1 57 100.0 0.1 45 100.0 0.1 8 100.0 0.1 5
5 3 3 L 100.0 0.3 197 100.0 0.2 102 100.0 0.1 16 100.0 0.1 9
10 2 3 L 100.0 5.8 1106 100.0 4.8 757 100.0 5.0 1069 100.0 3.7 445
10 3 3 L 100.0 41.8 8666 100.0 28.9 4358 100.0 9.3 1779 100.0 6.0 727
15 2 3 L 100.0 150.6 11236 100.0 54.0 3278 100.0 241.3 19135 100.0 57.9 2525
15 3 3 L 98.9(1) 1477.5 76621 99.6(1) 991.9 51154 100.0 329.7 20756 100.0 55.7 2248
5 2 3 H 100.0 0.1 44 100.0 0.1 24 100.0 0.1 11 100.0 0.1 1
5 3 3 H 100.0 0.2 153 100.0 0.1 61 100.0 0.1 23 100.0 0.1 3
10 2 3 H 100.0 6.8 1466 100.0 8.9 1569 100.0 6.0 1257 100.0 3.5 401
10 3 3 H 100.0 45.9 10468 100.0 24.6 3576 100.0 11.1 2208 100.0 5.2 657
15 2 3 H 100.0 149.6 10385 100.0 53.9 3402 100.0 391.3 24411 100.0 70.2 3662
15 3 3 H 99.4(1) 1251.8 73544 100.0 649.1 38901 100.0 260.0 15888 100.0 63.9 2646
5 2 6 L 100.0 23.7 11083 100.0 22.7 9483 100.0 3.3 1296 100.0 6.2 2331
5 3 6 L 100.0 373.2 195135 100.0 278.7 128430 100.0 3.1 1056 100.0 4.2 1614
10 2 6 L 97.1(2) 1810.9 131482 97.9(2) 1671.7 98941 97.5(2) 2219.4 155946 98.8(1) 1898.7 103737
10 3 6 L 95.1(4) 3542.6 231848 95.4(4) 3599.8 194042 94.9(4) 3500.1 216166 95.5(4) 3231.2 129350
15 2 6 L 92.5(5) 3600.0 64045 95.4(5) 3600.0 52811 91.5(5) 3600.0 56616 95.1(5) 3600.0 44198
15 3 6 L 90.4(5) 3600.0 56366 92.1(5) 3600.0 41742 87.0(5) 3600.0 53605 89.2(5) 3600.0 35516
5 2 6 H 100.0 23.7 10590 100.0 23.8 9577 100.0 3.8 1532 100.0 5.9 2203
5 3 6 H 100.0 275.1 145895 100.0 232.7 101098 100.0 2.7 988 100.0 3.7 1377
10 2 6 H 98.3(2) 1738.0 124051 98.9(2) 1590.8 92794 98.4(2) 2100.4 144600 99.3(2) 2072.4 108765
10 3 6 H 96.9(4) 3196.0 221673 97.0(4) 3535.1 191522 96.8(3) 3396.7 226370 96.5(4) 3510.0 158959
15 2 6 H 96.1(5) 3600.0 61850 97.9(5) 3600.0 56568 95.5(5) 3600.0 61377 97.5(5) 3600.0 43490
15 3 6 H 94.8(5) 3600.0 57869 95.6(5) 3600.0 42722 91.7(5) 3600.0 53524 92.9(5) 3600.0 34319

(−) indicates the number of instances (out of 5) were not solved to optimality

Table 12 Average results for Op-ALNS
on MVPRP instances.

n l m MVPRP-ML MVPRP-OU
Op-ALNS Op-ALNS
%Diff Time %Diff Time

10 2 3 0.4 4.6 0.0 4.2
10 3 3 1.1 4.3 0.0 4.4
15 2 3 0.9 6.6 2.0 5.8
15 3 3 1.0 6.6 1.0 6.7
10 2 6 0.6 7.3 0.1 9.5
10 3 6 0.4 8.4 0.1 14.0
15 2 6 1.0 13.8 0.4 14.1
15 3 6 1.6 14.0 0.7 17.6
10 2 9 1.8 13.8 1.4 18.4
10 3 9 1.8 12.9 1.3 26.7
15 2 9 1.6 24.1 1.2 28.2
15 3 9 1.6 25.7 1.6 55.7
Average 1.2 11.8 0.8 17.1

good as the MVPRP but the Op-ALNS could still provide good quality solutions within a

few seconds.

We test the effect of setting the initial upper bounds produced by the Op-ALNS and the

results are provided in Table 14 and 15. Column %TR designates the percentage reduction

on average computing times on instances were solved to optimality (bracket is used if the

average computing time increases). The results show that the average computing times on

the MVPRP instances could generally reduce by setting the initial upper bounds, while

there is no significant effect on the MVIRP instances. On the instances not solved to
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Table 13 Average results for Op-ALNS on
MVIRP instances.

n l m hi MVIRP-ML MVIRP-OU
Op-ALNS Op-ALNS
%Diff Time %Diff Time

5 2 3 L 0.2 3.5 2.2 3.4
5 3 3 L 1.4 3.7 0.8 3.8
10 2 3 L 4.5 5.5 8.3 6.6
10 3 3 L 4.4 6.0 6.7 7.4
15 2 3 L 4.7 7.9 8.8 8.1
15 3 3 L 7.8 10.3 13.0 13.7
5 2 3 H 1.0 3.2 0.0 3.3
5 3 3 H 1.1 3.7 0.5 4.0
10 2 3 H 2.2 5.3 2.0 6.2
10 3 3 H 2.8 6.0 2.2 7.1
15 2 3 H 2.6 7.8 5.6 9.4
15 3 3 H 2.6 8.5 4.9 13.9
5 2 6 L 4.0 5.7 1.6 5.9
5 3 6 L 3.8 6.8 1.7 7.6
10 2 6 L 6.6 9.7 8.7 9.7
10 3 6 L 6.6 11.4 7.7 12.0
15 2 6 L 6.0 18.0 12.1 16.5
15 3 6 L 7.8 18.8 10.7 20.6
5 2 6 H 2.6 5.7 2.3 5.7
5 3 6 H 2.7 6.6 1.0 7.5
10 2 6 H 3.0 9.8 6.0 9.1
10 3 6 H 4.1 11.4 6.4 11.6
15 2 6 H 2.5 17.6 6.8 15.7
15 3 6 H 3.1 17.3 5.4 19.7
Average 3.7 8.8 5.2 9.5

optimality, One possible reason is that the quality of the upper bounds on the MVIRP

instances is not as good as the MVPRP instances.

Table 14 Effect of initial upper bounds on MVPRP instances.

n l m MVIPRP-ML MVPRP-OU
F (ML)|k F (ML)|nk F (OU)|k F (OU)|nk
%LB Time %TR %LB Time %TR %LB Time %TR %LB Time %TR

10 2 3 100.0 0.2 20.1 100.0 0.1 6.0 100.0 0.5 35.3 100.0 0.2 43.2
10 3 3 100.0 0.8 13.0 100.0 0.3 25.1 100.0 0.8 57.4 100.0 0.2 36.5
15 2 3 100.0 3.8 18.6 100.0 8.9 42.6 100.0 25.2 18.7 100.0 86.1 38.4
15 3 3 100.0 41.7 22.5 100.0 37.3 36.7 100.0 26.7 10.8 100.0 338.2 21.1
10 2 6 100.0 2.7 (5.7) 100.0 0.8 16.5 100.0 0.7 29.0 100.0 0.3 1.1
10 3 6 100.0 18.5 (0.0) 100.0 17.3 12.2 100.0 2.1 27.5 100.0 0.3 54.1
15 2 6 100.0 165.0 (1.8) 99.7(1) 1081.1 - 100.0 13.7 21.4 100.0 60.6 (14.3)
15 3 6 99.9(1) 1818.3 - 99.2(4) 3600.0 - 100.0 123.1 28.2 100.0 126.1 (7.0)
10 2 9 100.0 31.5 (1.8) 100.0 34.5 35.4 100.0 23.2 (30.1) 100.0 5.6 37.6
10 3 9 100.0 664.0 28.9 100.0 1336.5 8.1 100.0 115.6 23.7 100.0 48.1 (10.2)
15 2 9 99.1(2) 2167.2 - 99.3(4) 3600.0 - 99.8(1) 1529.9 - 99.1(4) 3600.0 -
15 3 9 96.3(4) 3600.0 - 98.1(4) 3600.0 - 97.3(4) 3600.0 - 97.8(4) 3600.0 -
Average 99.6 709.5 10.4 99.7 1109.7 22.8 99.8 455.1 22.2 99.7 655.5 20.0

(−) indicates the number of instances (out of 4) were not solved to optimality

Table 14 and 15 also provide insights about the performance of the vehicle index and

non-vehicle index formulations. The vehicle index formulations F (ML)|k and F (OU)|k

could find more optimal solutions and generally spend less computing times on average

compared to the non vehicle-index formulations F (ML)|nk and F (OU)|nk. There is no
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Table 15 Effect of initial upper bounds on MVIRP instances.

n l m hi MVIRP-ML MVIRP-OU
F (ML)|k F (ML)|nk F (OU)|k F (OU)|nk
%LB Time %TR %LB Time %TR %LB Time %TR %LB Time %TR

5 2 3 L 100.0 0.2 (0.9) 100.0 0.1 0.0 100.0 0.1 0.0 100.0 0.1 0.0
5 3 3 L 100.0 0.5 16.2 100.0 0.2 0.0 100.0 0.1 0.0 100.0 0.1 0.0
10 2 3 L 100.0 2.1 0.1 100.0 3.1 35.4 100.0 3.4 2.9 100.0 3.1 16.2
10 3 3 L 100.0 14.2 23.2 100.0 22.5 22.1 100.0 8.1 5.8 100.0 4.8 20.0
15 2 3 L 100.0 8.1 20.1 100.0 29.4 45.6 100.0 9.4 5.1 100.0 31.9 44.9
15 3 3 L 100.0 69.7 (3.1) 99.2(1) 1031.2 - 100.0 31.4 34.7 100.0 72.2 (29.6)
5 2 3 H 100.0 0.2 (9.1) 100.0 0.1 0.0 100.0 0.0 0.0 100.0 0.1 0.0
5 3 3 H 100.0 0.5 (16.0) 100.0 0.1 0.0 100.0 0.1 0.0 100.0 0.1 0.0
10 2 3 H 100.0 2.5 12.3 100.0 6.2 30.3 100.0 3.4 10.5 100.0 3.2 8.6
10 3 3 H 100.0 15.9 5.4 100.0 37.6 (52.8) 100.0 7.6 12.6 100.0 6.0 (15.4)
15 2 3 H 100.0 7.2 3.4 100.0 46.7 13.4 100.0 8.9 27.0 100.0 56.1 20.1
15 3 3 H 100.0 60.7 2.2 100.0 741.9 (14.3) 100.0 30.4 9.8 100.0 45.1 29.4
5 2 6 L 100.0 5.4 1.4 100.0 21.6 4.8 100.0 2.0 9.1 100.0 5.7 8.1
5 3 6 L 100.0 187.3 (0.4) 100.0 342.7 (23.0) 100.0 0.2 0.0 100.0 3.9 7.1
10 2 6 L 100.0 189.2 4.0 98.2(2) 1618.2 - 100.0 235.7 33.9 99.0(1) 1761.2 -
10 3 6 L 94.6(4) 3504.4 - 95.6(4) 3281.6 - 96.6(3) 2848.4 - 95.8(5) 3600.0 -
15 2 6 L 99.8(1) 1319.1 - 95.6(5) 3600.0 - 100.0 1287.5 6.9 95.3(5) 3600.0 -
15 3 6 L 91.7(5) 3600.0 - 92.2(5) 3600.0 - 86.5(5) 3600.0 - 89.4(5) 3600.0 -
5 2 6 H 100.0 4.0 7.8 100.0 22.0 7.6 100.0 1.9 0.0 100.0 5.9 0.0
5 3 6 H 100.0 108.0 8.9 100.0 236.0 (1.4) 100.0 0.2 0.0 100.0 4.5 (21.6)
10 2 6 H 100.0 158.5 10.3 98.8(2) 1588.0 - 100.0 327.0 0.2 99.5(1) 1776.2 -
10 3 6 H 96.7(3) 3184.2 - 97.2(5) 3600.0 - 97.5(3) 2959.3 - 97.0(4) 3443.2 -
15 2 6 H 100.0 1282.7 (24.1) 97.9(5) 3600.0 - 100.0 1364.1 (41.9) 97.5(5) 3600.0 -
15 3 6 H 95.8(5) 3600.0 - 95.6(5) 3600.0 - 91.7(5) 3600.0 - 92.9(5) 3600.0 -
Average 99.1 721.9 3.3 98.8 1126.2 4.5 98.8 680.4 5.8 98.6 1051.0 5.5

(−) indicates the number of instances (out of 5) were not solved to optimality

significant difference on the average optimality gaps of the two formulation schemes within

the computational time limit of one hour.

6.5. Results on Larger Instances.

*The discussion and full results will be provided. In overall, it seems that the non-

vehicle index formulations are less sensitive to the size of the problems and could produce

better lower bounds within one hour.

Table 16 Average results on larger MVIRP instances.

n m l MVIPRP-ML MVPRP-OU
F (ML)|k F (ML)|nk Op-ALNS F (OU)|k F (OU)|nk Op-ALNS
%LB Time %LB Time %DIFF Time %LB Time %LB Time %DIFF Time

20 3 3 100.0 89.2 100.0 83.1 3.4 10.0 100.0 1326.3 TBD 1.3 8.4
25 3 3 100.0 172.2 100.0 632.8 2.0 14.3 96.9 3600.0 1.8 14.3
30 4 3 99.4 3143.6 99.6 2973.2 2.2 28.1 93.9 3600.0 0.0 23.3
35 4 3 98.0 3600.0 98.6 3600.0 2.0 43.0 93.8 3600.0 0.0 37.7
40 5 3 95.9 3600.0 96.9 3600.0 0.2 67.3 93.0 3600.0 0.0 52.5
20 3 6 100.0 1782.6 99.3 1811.8 1.5 20.6 100.0 520.0 0.5 32.7
25 3 6 98.6 2178.5 98.7 2527.6 1.0 34.2 97.8 3600.0 0.8 48.4
30 4 6 96.1 3600.0 97.8 3600.0 0.4 59.3 97.2 3600.0 0.0 90.3
20 3 9 97.3 3600.0 0.1 39.2 98.2 3600.0 0.1 70.4
Average 98.4 2418.5 1.4 35.1 96.8 3005.1 0.5 42.0
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6.6. Performances of the Exact Algorithms on Single Vehicle Instances.

*The results and the discussion on this section will be updated. In this section,

we test the performance of our branch-and-cut algorithms on the single vehicle PRP and

IRP in literature. Since the SBCs are dropped when m< 2, the formulations F (ML)|k and

F (OU)|k become equivalent to the formulation proposed by Archetti et al. (2007, 2011b)

and Solyalı and Süral (2011), respectively. We add a few remarks on the two formulation

schemes on the single vehicle case. Without additional valid inequalities, the constraints

in the F (ML)|k and F (OU)|k that do not appear in the F (ML)|nk and F (OU)|nk are

constraints (7) for the ML policy or (44) for the OU policy and constraints (11), while

the constraints (28) or (56) are used in place of these two constraints for the ML and OU

policy, respectively. With the valid inequalities in Section 3.2 for the single vehicle case,

the inequalities (59), (60) and (61) are equilvalent to (7), (44) and (11), respectively. Thus,

the formulations F (ML)|nk and F (OU)|nk become equilvalent to F (ML)|k and F (OU)|k

plus additional valid inequalities.

We test the single vehicle using the MVPRP and MVIRP instances in the previous

section. For the single vehicle PRP, we simply set the number of vehicles to one, and

use the combined vehicle capacity, i.e., Q=Qs =mQm, where Qs and Qm are the vehicle

capacity used in the single and multiple vehicle instances, respectively. For the instance

sizes that have different number of vehicles (i.e., instances with n = 10,15, we use the

Qm from the instances with lower number of vehicles to calculate the capacity Qs. For

the single vehicle IRP, the instances are actually the original single vehicle IRP instances

presented in Archetti et al. (2007). The results on the single vehicle PRP and IRP are

shown in Table 17 and 18, respectively.

We can see that, compared to the multi-vehicle instances, the single vehicle instances

are much easier to solve compared to the multiple vehicle case. There is no significant

difference in the performance of using different formulations.

We also test the performance of the algorithm on the single vehicle PRP instances with

uncapacitated production in Archetti et al. (2011b) which consists of 480 PRP instances

with 14 customers and 6 periods. Since the instances were designed to test a heuristic,

several different parameter settings in terms of inventory, production and transportation
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Table 17 Average results on the single vehicle PRP instances (results are not updated).

n l F (ML)|k F (ML)|nk F (OU)|k F (OU)|nk
T ime Nodes Cuts T ime Nodes Cuts T ime Nodes Cuts T ime Nodes Cuts

10 3 0.1 5 10 0.1 5 36 0.2 1 14 0.2 4 19
10 6 0.6 3 52 0.6 4 54 0.3 1 16 0.3 1 22

10 9 1.3 18 83 1.7 27 97 1.0 11 52 1.4 7 68

15 3 0.3 2 34 0.3 2 62 1.3 47 90 1.5 44 104
15 6 2.6 5 147 3.8 10 141 0.4 1 17 0.6 1 19

15 9 31.0 222 410 29.2 219 406 12.0 134 173 18.1 168 234

20 3 0.5 8 45 1.3 264 219 1.3 30 65 1.5 34 61
20 6 4.4 2 171 6.5 3 181 2.3 57 39 4.1 133 187

20 9 22.4 87 265 29.0 77 300 13.5 42 167 20.7 44 217
25 3 1.0 139 40 1.6 28 96 15.2 243 284 11.7 175 279

25 6 14.9 5 265 23.6 3 286 13.1 35 149 10.5 22 111

25 9 558.0 976 859 386.3 765 811 69.2 146 316 86.8 130 382
30 3 9.2 12 195 9.5 13 198 36.5 253 478 38.9 263 611

30 6 86.6 112 575 111.9 159 546 3.3 1 49 3.3 1 51

30 9 1095.9 652 1676 1062.1 641 1504 127.7 55 544 170.5 51 617
35 3 10.7 16 159 18.7 9 210 268.5 1283 1112 218.5 1141 1200

35 6 130.3 126 481 153.0 149 502 7.0 10 74 9.3 167 165

35 9 1224.2(1) 363 1697 1413.1(1) 294 1804 247.2 75 683 411.0 161 752
40 3 20.1 5 161 27.5 5 197 162.7 489 712 145.1 488 758

40 6 110.2 3 461 146.6 4 425 63.3 23 238 87.6 82 301

40 9 1426.4(1) 213 1660 1366.5(1) 165 1635 817.9 219 950 1393.5 330 1342

(−) indicates the number of instances not solved to optimality

Table 18 Average results on the single vehicle PRP instances (results are not updated).

n l Class F (ML)|k F (ML)|nk F (OU)|k F (OU)|nk
Time Node Cut Time Node Cut Time Node Cut Time Node Cut

5 3 Low 0.0 13 6 0.0 10 16 0.0 0 8 0.0 0 10
10 3 Low 0.2 0 21 0.1 3 19 0.5 21 62 0.5 14 65
15 3 Low 0.4 11 30 0.7 257 189 1.7 48 109 2.0 39 125
20 3 Low 1.9 37 86 2.3 43 84 5.0 111 226 6.8 56 268
25 3 Low 4.5 223 99 3.8 243 264 9.8 61 261 17.4 124 382
30 3 Low 14.0 163 159 30.8 1090 805 28.6 97 502 29.9 70 456
35 3 Low 4.2 32 59 4.4 8 62 67.0 171 602 107.1 168 740
40 3 Low 32.3 118 174 40.9 289 411 119.9 132 775 181.9 198 874
45 3 Low 65.9 62 237 67.1 99 202 272.2 349 1049 219.2 172 715
50 3 Low 239.9 121 590 184.4 111 407 677.0 243 1671 641.1 206 1530
5 3 High 0.0 15 4 0.0 15 18 0.0 1 9 0.0 0 11
10 3 High 0.2 3 26 0.1 4 20 0.5 17 56 0.7 17 72
15 3 High 0.6 38 38 0.5 43 65 1.8 52 127 2.2 54 145
20 3 High 2.0 30 85 2.6 33 82 5.0 57 243 5.5 62 224
25 3 High 3.6 182 83 3.6 171 204 9.7 51 296 19.0 66 388
30 3 High 12.6 130 153 18.8 344 363 31.4 103 540 37.9 138 540
35 3 High 4.0 16 73 7.0 73 106 61.2 148 620 76.1 118 611
40 3 High 31.5 55 213 32.7 698 722 128.4 148 804 134.3 128 775
45 3 High 56.1 236 230 48.2 110 225 188.4 170 808 236.2 181 816
50 3 High 194.4 132 499 190.4 144 495 664.1 267 1666 484.8 175 1183
5 6 Low 0.2 28 20 0.2 22 27 0.4 25 34 0.7 32 46
10 6 Low 1.4 36 82 1.1 15 76 2.3 123 132 2.6 78 144
15 6 Low 5.6 76 189 5.0 50 187 6.0 67 256 6.9 78 246
20 6 Low 37.4 293 469 31.5 266 415 58.6 511 688 68.0 628 772
25 6 Low 48.7 175 429 56.8 203 495 83.5 259 705 65.0 140 649
30 6 Low 283.5 691 985 280.0 780 1101 247.1 331 1287 259.0 385 1314
5 6 High 0.2 16 20 0.2 15 27 0.3 20 29 0.5 30 43
10 6 High 1.1 23 75 1.0 11 67 2.1 60 137 2.6 72 137
15 6 High 5.0 62 191 6.0 65 215 5.7 67 237 6.3 59 250
20 6 High 18.5 107 354 22.3 128 373 65.0 528 755 53.8 432 733
25 6 High 34.1 86 412 36.7 75 404 42.6 98 536 71.3 185 633
30 6 High 120.2 153 729 135.5 151 866 292.5 442 1347 226.1 305 1262
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costs are used to generate the test set. In Archetti et al. (2011b), they consider the PRP-

ML with uncapacitated production where the inequalities below that are valid for the

uncapacitated lot-sizing problem are also added,

It−1 ≤
∑
i∈Nc

l∑
j=t

dij(1− yt) ∀t∈ T (69)

yt ≥
f

h0j
(yt−j + yt− 1) 2≤ t≤ l,1≤ j ≤ t− 1. (70)

These inequalities are also added in the F (ML)|k and F (ML)|nk formulations. The results

are shown Table 17. Since there are 480 instances, we report the average results of each

class. Column Cuts shows the number of cuts generated in the branch-and-cut process.

Note that all instances, which were not solved to optimality in Archetti et al. (2011b), are

solved to optimality in this implementation.

Table 19 Results on Archetti et al. (2011b)
PRP-ML instances with 14 customers and 6

periods.

Class F (ML)|k F (ML)|nk
Time Node Cut Time Node Cut

I 6.8 143 209 6.7 115 230
II 5.5 117 183 5.1 83 192
III 11.9 303 256 11.2 239 264
IV 8.9 208 232 7.8 152 235
Avg 8.3 193 220 7.7 147 230

The F (ML)|nk could provide slightly better results due to additional valid inequalities

added to the formulation and the average number of nodes in the branch-and-bound tree

is also reduced.

7. Conclusion.

In this study, we discuss the multi-vehicle aspect in the production routing problem (PRP).

Two strong formulations, one with vehicle index and the other without vehicle index,

are introduced. We propose several valid inequalities including symmetry breaking con-

straints to strengthen the formulations and develop branch-and-cut approaches to solve the

problems. The computational experiments are performed with three different production

strategies. The results show the performances of the strong formulation with vehicle index

on smaller number of customers where the strong formulation without vehicle index could

produce better lower bounds in large instances. The experiments on single vehicle PRP



Adulyasak, Cordeau, and Jans: Branch-and-Cut for the MVPRP
36 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

and IRP instances also show that, the inequalities added to the formulation without vehicle

index could also provide slightly better computational performance on the ML policy.

Acknowledgments

Appendix A: Details of the MVPRP Instance Generation.

The MVPRP instances are generated using the instances presented in Archetti et al. (2011b). We select the

instances with 50 to generate our test bed. The details are as follows.

1. Instance size. We create instances from n = 10− 40, to 10− 30 and to 10− 20 customers with an

incremental of 5 for the time periods l= 3,6 and 9, respectively. The instances with n= 10,15 consists

of two subsets of instances with the different number of vehicles.

2. Customers: To generate a new instance with n customers, we select customer numbers from 1 to n

from the Archetti et al. instance. For the instances with 3 periods, initial inventory levels at customers

are all reduced by the factor of 2 to prevent the case where initial inventory levels are already sufficient

to satisfy demand during the planning horizon. Also, since the target stock level in Archetti et al. test

set is defined by the inventory after consumption. We simply set the Li = L̄i + dit where L̄i is the

original value in Archetti et al. test set. This does not have any effect since the values of dit for each

customer in Archetti et al. test set are constant during the planning horizon.

3. Vehicles. Since the number of vehicles in the original instances are unlimited, we set the number

of vehicles equal to m = m̄ = bn/10c+ 1. For the instances with n = 10,15, we also create the other

instances with an additional vehicle, i.e., m = m̄ + 1. Similar to Archetti et al., we set the vehicle

capacity related to the maximum inventory level of customers. The vehicle capacity is calculated as

Q=
⌊
1.5m̄maxi∈Nc

{L̄i}/m
⌋
. In our test, this setting is appropriate since smaller vehicle capacity could

lead to infeasible solutions, especially for the MVPRP-OU.

4. Instance number. We generate four instances per one instance size. Each instance is brought from a

different instance class in Archetti et al. dataset to ensure that different characteristics are captured.

We select the original instance type 1, 25, 49 and 73 to create our test bed.

5. Production capacity. In Archetti et al. dataset, they considered uncapacitated production and unlim-

ited inventory capacity at the plant. Since we also consider production capacity in our study, the

production capacity is set to C =
⌊
2d̄/l

⌋
and plant inventory capacity is set to L0 = bC/2c . In our pre-

liminary test, we found that a smaller production capacity could lead to stockout in the MVPRP-OU.

Appendix B: Details of the IRP Instance Conversion.

The IRP instances in Archetti et al. (2007) were created using different inventory replenishment practice. In

Archetti et al. 2007, the inventory level is considered at the beginning of the period. We denote by sit, the

begining inventory level at node i in period t and we can observe that

sit = Ii,t−1 ∀i∈N,∀t∈ T. (71)
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The following modifications are used to convert the instances in Archetti et al. (2007) for our formulation.

For ease of presentation, we use the variable without vehicle index and they can be easily converted to vehicle

index formulations using qit =
∑

k∈K qikt.

First, the supplier can only use the inventory at the beginning of the period to replenish the customers and

the supplier must ensure that the total amount shipped to retailers in a period cannot exceed the available

amount at the supplier in the beginning of that period, i.e.,

s0t ≥
∑
i∈Nc

qit ∀t∈ T. (72)

Replacing s0t by I0,t−1 and from (22) and (58), the constraints can be rewritten as,

I0t ≥Bt ∀t∈ T, (73)

and these constraints are added to our formulations.

Second, since the inventory costs are charged at the begining of the period starting from period one where

si1 = Ii0 or the initial inventory levels. The fixed cost
∑

i∈N hiIi0 is simply added to the formulations.

The other parts of the formulations remain unchanged.
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and-cut algorithm for a production-routing problem. GERAD Tech. Rep. G-2010-66, HEC Montréal,
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